








For eukaryotic 28S, only two genomes had predictions
with matching annotations. One of them, Encephalitozoon
cuniculi, had stop positions predicted once 1112 nt and
twice 4797 nt downstream of the annotation, whereas
the start position was accurately predicted. In the
other genome, Guillardia theta, the start positions were
uniformly predicted 110 nt upstream of the annotated
position, but with the stop position quite accurately
predicted.

Since rRNAs tend to be very similar within a genome,
predictions within each genome generally had similar
lengths. This similarity within genomes as well as within
groups of closely related genomes caused multiple peaks
in the distributions of endpoint deviations. An example
of this can be seen in the bacterial 16S predictions where
some of the predicted start and stop positions were
clustered downstream of the annotation and where some
of the predicted start positions were clustered upstream

Table 2. The number of rRNAs annotated and predicted in the genomes that were examined.

Kingdom Type Annotated Same strand Other strand Not found Full model predictions Novel

Archaea (n¼ 27) 5S 56 (24) 43 (21) 1 (1) 12 (8) 47 (23) 4 (3)
16S 47 (25) 45 (25) 2 (2) 0 (0) 47 (27) 2 (2)
23S 47 (25) 44 (24) 2 (2) 1 (1) 46 (26) 2 (2)

Bacteria (n¼ 321) 5S 1205 (285) 1166 (285) 30 (16) 9 (5) 1339 (320) 173 (69)
16S 1172 (299) 1146 (299) 22 (12) 4 (4) 1237 (320) 91 (34)
23S 1197 (297) 1154 (291) 22 (13) 21 (12) 1248 (313) 94 (36)

Eukaryotes (n¼ 13) 5S 65 (7) 46 (6) 19 (1) 0 (0) 324 (9) 278 (5)
18S 13 (4) 6 (4) 0 (0) 7 (2) 13 (6) 7 (3)
28S 13 (5) 12 (4) 0 (0) 1 (1) 19 (7) 7 (3)

The table gives the number of annotations, and splits this into those matching predictions on the same strand, on the other strand, and not found.
The total number of full model predictions is given. Novel predictions are full model predictions not matching any annotation on the same strand,
and include those annotated on the other strand. Numbers in parentheses indicate the number of genomes. It should be noted that the eukaryotic
annotated count is somewhat uncertain due to ambiguous rRNA annotations. The genomes which were analyzed were from the GenomeAtlas
database, a database over all available fully sequenced genomes.
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Figure 2. Deviation of start and stop positions between predicted and annotated RNA is presented as pairs of panels. The number of predictions
among the archaea, bacteria and eukaryotes are denoted beneath the panel group heading. The zero position in each panel corresponds to the
annotation start or stop position with predicted positions presented relative to these. The yellow dot indicates the median deviation and the black
box the quartile range. The hinges on the side of the box extend from the side of the box to the data point that is closest to, but does not exceed, 1.5
times the interquartile range. The curves show the density of the distribution.
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of the annotation. Some of the major contributors to
the upstream peak in the start positions were different
Streptococcus pyogenes strains, Bacillus genomes and
Yersinia pestis genomes. These, in addition to
Streptococcus agalactiae strains and Vibrio parahaemo-
lyticus, were also prevalent in the stop position down-
stream peak. There was also a downstream peak in the
start positions, and the genomes causing this peak were
mainly Staphylococcus aureus, Bacillus cereus and several
Escherichia coli relatives.

Most of the start and stop deviations did not exceed
100 nt. However, there were a few cases of deviations
exceeding 1000 nt, and these are not shown in the figure.
This was the case for eukaryotic 23S and was mainly due
to the three previously described stop positions predicted
considerably downstream of the annotated stop position.
In the two longer predictions from E. cuniculi, this was
due to the HMM placing the latter 100 nt of the prediction
further downstream to achieve a better score. Such inserts
would most likely not appear when the spotter model is
used first, since the inserted sequence would be too long.
To test this, a truncated version of the sequence was run
through the predictor. The stop position was then
accurately predicted. This phenomenon also explains
some cases among the bacterial 16S predictions where the
start position was placed very far upstream of the
annotation. There were 27 rRNAs that had a start
position predicted to start anywhere from 13 000 to
40 000 nt upstream of the annotated start position. All
but one of these were Firmicutes, mostly Streptococci and
Staphylococci. Closer study of the sequences revealed that
the misplaced start position predictions were again due to
long sequences being inserted near the start of the rRNA,
indicating that the first part of the HMM had been
misplaced in the same manner as for Guillardia theta’s stop
predictions. To test if these were the same kind of inserts,
a region ending in the same place as the predictions but
starting 10 000 nt earlier was run through the full model
predictor. This led to the bacterial 16S rRNAs being
predicted with a deviation in start and stop positions on
par with what was otherwise seen.

Comparison to experimentally verified rRNAs

Annotations were often ambiguous and considered
unreliable. For discrepancies between annotations and
RNAmmer predictions, it is not a priori clear which of the
two is correct. However, some genomes with experimen-
tally verified rRNAs were selected to further assess the
accuracy of start and stop predictions. The genomes
we examined were Anaplasma marginale Str. Maries,
Chlamydia muridarum Nigg, Escherichia coli K12
MG1655, Sulfolobus tokodaii Str. 7, Thermus thermophilus
HB8 and Nitrobacter hamburgensis X14. These genomes
all had complete 16S sequences according to the NCBI
database and had accompanying literature which said that
they were experimentally determined. When checking
the positions of these rRNAs with BLAST against the
genome, some discrepancies were found. Due to this we
used the BLAST results when comparing annotated
rRNAs to predictions.

In total, there were 14 copies of the six 16S sequences,
and all of them were found by our predictions. Stop
predictions were more accurate than start predictions.
In all but four cases, the start position was predicted
to be 7 nt downstream of the annotated start position.
In A. marginale and S. tokodaii, the start position was
predicted to be the same as annotation, and both of the
two entries from C. muridarum were predicted to start 3 nt
downstream of annotated start position. In N. hambur-
gensis the start position was, in contrast to the other cases,
predicted to start 7 nt upstream of annotated start
position. The stop positions in all but three predictions
ended on the same position as the annotation. In N.
hamburgensis predicted stop was 9 nt downstream,
whereas in S. tokoaii and A. marginale the predicted
stop was 1 nt downstream of annotation. Thus,
all predictions were within 10 nt of the annotated start
and stop positions.

Comparison to RFAM

RFAM is a database of RNA families which incorporates
secondary structure in its analyses. We have made a
comparison with the 5S rRNA predictions of
RFAM (17,18) for a selection of twenty prokaryotic
genomes listed in Supplementary Table S5. There were a
total of 55 5S annotated in these genomes. RNAmmer
found 53 of them, while 54 were found in RFAM. In three
of the genomes, both methods predicted a 5S to within a
few nucleotides of the annotated position, but both placed
it on the other strand. Both predictors identified three new
5S rRNAs within these genomes, and at approximately the
same positions. Two of these new 5S rRNAs followed
another annotated 5S rRNA, looking like a tandem
repeat. In most cases, both methods placed the start
position a few nucleotides downstream of the annotation,
whereas the stop position was more evenly distributed
around the annotated position. RNAmmer generally
predicted rRNAs to be shorter by a nucleotide or two
than RFAM, usually at start of the genes.

Spotter pre-screening

Table 3 shows that, with the exception of archaeal 5S,
no full model hits were missed by the spotter model.
Also, the spotter produced relatively few false positives,
except for the eukaryotic 5S.
Minimum, maximum, quantile and median scores for

all the full model predictions are shown in Table 3, giving
some indication of the range of scores that rRNAs can be
expected to have. The table also includes the threshold T99

and the likelihood Pmin which indicate that all full model
predictions were expected to have corresponding spotter
model predictions except some among the archaeal 5S.
Based on the relatively stable lengths of the different

types of rRNAs and the corresponding full model hits and
the position of the spotter hit within them, we decided on
window sizes around spotter model hits to use when the
spotter model is used first. These were chosen to be 300 nt
for the 5S rRNA, 5000 nt for the 16/18S and 9000 nt for
the 23/28S. Being roughly three times the length of the
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corresponding rRNAs, we consider rRNA sequences to be
unlikely to extend beyond these windows.

Computational speed

Searching Mycoplasma capricolum ATCC27343, about
1 Mbp, for bacterial 16S took 14 minutes using the full
HMM. Using the spotter to screen the sequence, then the
full model on the spotter hits, reduced the time to
16 seconds. Search times are expected to increase
proportionally to the genome size; when using the spotter
model to screen the sequence, search time will also
increase with increasing number of spotter hits.
Time differences between searching long and short

sequences were examined by searching through the
complete sequence of Solibacter usitatus Ellin6076, and
through the Sargasso Sea environmental samples (19).
Searching the S. usitatus genome, about 10Mbp, took 48
seconds per Mbp. Two copies from each rRNAs family
were found. The Sargasso Sea samples consisted of
811 372 entries totaling over 800 Mbp. On this set the
search speed was 407 seconds per Mbp. The article (19)
accompanying this set indicated 1164 small subunit rRNA
genes (16/18S) or fragments of genes; we found only 332,
but our predictors are not able to find fragments of
rRNAs. In addition, we found 562 5S and 68 23S
sequences.

DISCUSSION

Our aim has been to enable high-throughput searches for
rRNA while producing accurate and consistent predic-
tions suitable for comparative analyses. For this purpose,
we have developed the RNAmmer package which relies on
HMMs for both speed and accuracy. HMMs were made
using HMMer (15), which from a multiple alignment
produces an HMM where match states represent columns
with a specific nucleotide distribution, corresponding
deletion states represent the possibility of gaps, and
insertion states represent columns with large numbers of
gaps; transition probabilities between the states indicate
how likely each of the states are. HMMs thus differ from

sequence alignments in that the likelihood of insertions
and deletions may vary along the sequence. When
searching a sequence with an HMM, the score indicates
how well the sequence segment matches the model. The
information content of a position, which reflects the
nucleotide distribution and the likelihood of gaps,
indicates how well that position is conserved. A good
match to the HMM may come either from a highly
conserved region which may well be short, or from a
longer region with only weak conservation. We find both
these cases. Bacterial 16S are detected despite almost half
of the nucleotides being assigned to insert states, as other
regions are highly conserved. For archaeal 23S, however,
the information content of each position is low, but the
sequence is long and there are few allowed insert states.

These aspects can also explain cases of poor perfor-
mance, both of the full model and of the spotter model.
The low information content in the eukaryotic 5S and
18S alignments indicates that these sequences are more
divergent than archaeal and bacterial 5S and 16S.
In addition, 40% of the 5S and 75% of the 18S alignment
give rise to insert states in the HMM. Thus, there is little
for the HMM to recognize. In addition, many of the
missed 18S rRNAs were from Cryptophyta, a phylum
which makes up only 0.6% of the alignment data.

The archaeal 5S show the same characteristics as the
eukaryotic 5S and 18S, which most likely explains the low
performance for these rRNAs. The score for archaeal 5S
hits were generally low, and the spotter score comes only
from a 75 nt part of the sequence giving it even lower score
causing it to miss 12 of the full model hits. It is notable,
however, that these were the only cases missed by the
spotter model: with the exception of archaeal 5S, our
analyses show that the spotter should be able to detect
rRNAs unless they are much further diverged than what
we find in our data.

Columns at the beginning and end of the multiple
alignments often have low conservation and many gaps.
Such columns are generally accommodated into the
HMM as insert states, but HMMer ignores them at the
beginning and end of the alignment. An example is the 5S,

Table 3. Evaluation of spotter and full model predictions.

Kingdom Type Number of model predictions Full model scores T99 Pmin

Full Spotter FPS Min Q1 Med Q3 Max

Archaea 5S 47 35 7 2.9 12.7 20.0 35.3 50.6 34.9 0.69
16S 47 47 0 1180.8 1891.9 1937.9 2004.0 2096.5 50 1.0
23S 46 46 1 2240.7 2714.1 2870.7 3155.3 3267.3 50 1.0

Bacteria 5S 1339 1339 123 39.9 77.7 89.5 94.6 109.6 14.0 1.0
16S 1237 1237 31 721.9 1905.5 1989.4 2058.7 2148.5 50 1.0
23S 1248 1248 20 2502.8 3267.8 3586.5 3690.7 3876.1 50 1.0

Eukaryotes 5S 324 324 251 43.9 51.1 53.9 74.3 82.2 50 1.0
18S 13 13 14 625.3 625.3 1733.1 1777.5 1777.6 50 1.0
28S 19 19 5 1434.2 2904.7 3225.0 3335.9 3380.9 50 1.0

This table shows the total number of full models, the number of spotter predictions that had matching full model predictions and the number of false
positive spotter model predictions. The characteristics of the full model prediction score distributions are shown. FPS denotes the number of false
positive spotter predictions. T99 refers to the lowest score a full model could have while still being detected with 99% probability by a spotter model
with positive score. Pmin is the probability that a spotter with positive score would find a full model with the minimum score indicated. The lowest
score for a full model score can be used as a lower limit on which results could be expected to be real.
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where match states stop around 10 columns from the
end of the alignments effectively causing the HMM to
predict the last conserved nucleotide of the consensus
sequence rather than the stop of the rRNAs. Hence, it is
not uncommon for the stop position of the 5S to be
predicted up to 10 nt downstream of the annotated stop
position.

These effects can also explain the endpoint accuracy
that was seen when we compared our results to
experimentally determined 16S sequences. We tried to
find sequences where the ends had been experimentally
verified by RACE or PCR, but such rRNAs proved
difficult to find. All the ones we selected were sequenced,
but it is uncertain to what extent the authors had
tried to determine the ends. These experimentally
found rRNAs did show better agreement with annotation
than predictions in general, although this is not sufficient
to conclude that our predictions are more accurate. Our
stop predictions were very accurate, but more deviation
was seen in the start predictions. These results could reflect
more variation in the beginning of the alignments, which
as in the 5S case could effectively cause the HMM to
predict the last conserved nucleotide of the consensus
sequence rather than the end of the rRNAs.

In some cases, larger endpoint deviations occur. This
can happen when one of the ends of the model finds a
better match in a different part of the sequence. Insertion
states sometimes allows the HMM to insert long gap
regions and thus find a matching stop position far from
the rest of the sequence. As shown for the bacterial 16S
sequences that displayed this phenomenon, this is less of a
problem when the spotter model is employed. The window
searched around the spotter hit would most likely be too
short to accommodate such an insert, and the model
would match with the proper sequence.

For fragmented rRNAs, long gap regions may be
correctly predicted. This was seen for Coxiella burnetii 23S
where our prediction has the same start position
as annotated, but where the predicted stop position
is 1884 nt downstream of GenBank’s stop position.
However, according to Entrez Gene, this rRNA appears
in four pieces and with the same stop position as ours,
suggesting that in some cases ‘too long’ predictions might
actually be correct. These cases should normally not be
masked when using the spotter unless inserts between the
fragments would make it exceed the window size.

The HMM produced by HMMer requires time of order
O(NM) to search a sequence of length N using a model
with M states, M being proportional to the length of the
multiple alignment. However, the speed is increased by
using a 75 nt long spotter model to pre-screen the
sequence, which requires time of order O(N), and then
running the full HMM on windows around each spotter
hit which requires time of order OðKM2Þ for K spotter
hits, and window size proportional to M. The benefit of
using the spotter is clearly illustrated in the M. capricolum
searches. However, the time difference between the
S. usitatus and the Sargasso Sea data searches shows
that the spotter might lose its mission when dealing with
many shorter sequences.

There are other approaches to predicting non-coding
RNA. One commonly used method is sequence alignment,
e.g. BLAST (3), Paralign (20) or FASTA (21). Another is
based on structure-sensitive Stochastic Context Free
Grammars (SCFG) (22) which form the basis of the
tRNA prediction program tRNAscan-SE (23) and of
Infernal (24), which is used when creating RFAM. While
the sequence alignment methods are very fast, they are not
particularly suited for prediction of non-coding RNA (1).
Infernal, however, has a general worst case running time
of order OðMN3Þ, which is prohibitive. The RFAM
database (17,18), which includes 5S and the 50 domain
of 16S, uses BLAST to pre-screen genome sequences,
followed by Infernal; despite a more efficient approach
than the general SCFG, it does not analyze the entire 16S.
A search for 5S in a 1 Mbp genome using Infernal took
4 hours 45 minutes: almost 1000 times as much as the
16 seconds used by RNAmmer for the much larger 16S
model. A time-saving approach to SCFGs could be to use
the RaveNna (25) package which can convert an RFAM
SCFG to an HMM. This drastically reduces the running
time; however, its usefulness would be limited since no
models for the larger rRNAs are available. Another factor
is that the 5S found by RaveNna (26) which were not
already in RFAM were all in organellar sequences,
sequences not analyzed by RNAmmer. For further
comparisons and comments on these different methods,
we refer to (1).
The RNAmmer program is available as a traditional

HTML-based prediction server at http://www.cbs.dtu.dk/
services/RNAmmer as well as through a SOAP-based
web service. It is also available for download through
the same site.

SUPPLEMENTARY DATA

Supplementary Data is available at NAR online.
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